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*»Enabling the planetary science community to be ready
for Flagship Astrobiology missions of the next decade
— Mars Astrobiology Field Laboratory
— Europa Pathfinder Lander
— Titan Organic Explorer

» Prepare the capabilities for New Frontiers missions (e.g.
Venus, comet sample return, deep probes) and
Discovery missions kT
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California Institute of Tech Space In Sltu Instrumentatlon StIII In
Its Infancy

» Remote sensing has been operational for decades

= Viking was first planetary mission to use in situ instruments in 1976.
Hiatus of 21 years before Pathfinder in 1997

» Dearth of instrumentation was remedied somewhat by PIDDP, MIDP,
ASTID and ASTEP

* [n situ analysis complicated because answering specific science
guestions requires specific technologies suited to specific extreme
environment

» [nstrumentation may be based on photon sources, electron sources,
mass spectrometry, wet chemical techniques, etc.

» Process to develop in situ instrumentation is long, complicated and
requires high degree of system architecting and engineering

» Testing must be done in the field and on the mission platform as well
as in the expected environment

= Must look at end-to-end instrumentation, including sample acquisition
and handling, sample preparation, IT, control etc.

was in the 1970's
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= Driven by landing site latitude (10°N to 15°S), time of year (Lg = 328 at BOM,
Ls =30 at EOM ), ground albedo (0.12 to 0.25) and inertia (rock distribution),
dust level (Tau = 0.2) in atmosphere & elevation (-1.3km, MOLA)

= Global Circulation Model predicts ground, atmosphere & sky temps, solar
insolation during day

= Wind speeds from Viking data (0 to 20 m/sec)
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g s ooy Lunar Precursor Mission =
Environment

= Analyze a large scale Lunar survey/assay mission in the permanently dark
S. Polar Cap craters:
= Key environmental drivers include:

— 40K temperature in shadowed areasis challenge for any type of
actuation/thermal control;

While surface rock population isnot significant, crater impact
frequency is extremely large and represents major hazard to
landing/mobility systems;

1/6g gravity hasimpact on surface system stability;
Radiant heating in lit areas can cause huge temperature deltas
in structures’‘components;

— Lunar dust mostly silica which exhibits properties similar to
splintered glass;

— Lunar vacuum coupled with temp extremesrgrs unique
approach to selection of actuators (brushless) and
lubricant;

Likely target- Shackleton Crater @
90deg S. Polar Cap
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=Smooth, mantled
surface with
fractures: are the
properties of
Europa’s regolith
similar to those of
compacted snow?




@ Europa Surface Analogue S0

California Institute of Tech

Europa’s surface:

= |s it fluffy?

= |sitcrunchy?

= |sit bare solid ice?

Answer:
a. All of the above
b. We don't really know.

Our lander must
be able to survive
no matter what
the correct answer
turns out to be.
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Gt s Other Parameters

» Temperatures: Daytime ~ 130 K

: nighttime ~ 80 K
:Ambient Radiation: ~ 20 Rad /sec

:Atmosphere: Negligible

:Rotation Period: 3.55 Earth days

: Radius: 1565 km

:Surface Gravity: ~1.3m/sec 2 (82% of Lunar Q)
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Instrumentation:
Remote Sensing

Life Cycles of Remote Sensing compared to In Situ
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Instrumentation:In Situ

Does

Life Cycles of Remote Sensing compared to In Situ
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@CalifcrnialnstituteofTech Needed Capabilities For In Situ
Science

=»Astrobiology science definitions and investigations

*|n situ instrument concept, research, and
development

»Access methods and sample collection / handling /
processing techniques

*Planetary protection methodology
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CalifornialnstituteofTechnoloFram ework For Put'“ng The Pleces
Together

Site Determination Site selected

Sample Determination Sample selected

Sample Acquisition m m Sub-surface Sample IE
Sample Handling Evolved Gases [ gmud SOlid Sample gamy d Extracted Fluid

Sample Analysis

Physical Analysis

Sampleprep. [T [rorganic [ reare JFudnausion

- Survey Ana|ysis Chemical AnalySIS

Structure Spatial Distrib.

Classif. Ratio Ratio Analysis §| Determ. § Species J Structure — Porosity

= How Many ? |= Normal = 13C/12C Light Oxy -anions = Permeability
= Species? Unusual = 180/160 Heavy = Thermal Conductivity
— |someric = 15\ /14N ~ Electrical Conductivity

Properties . :
— Mass Distribution = D/H Radiogenic ~ Hardness

— |sotopic Distribution = 345325 Type & = K/Ar = Specific Gravity

Amount of
— Poly meric Analy sis — Bg/32g Agre_gus SN Cosmogenic [ Exposure to
Hes _ Lu/Hf Isotopes Radiation Examples of
=temal Hypothesis

memal - Driven Analyses
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The Wild World of Astrobiology

Astrobiology and In Situ Exploration is a contact sport!
Researchers have been “spanning the globe” in pursuit of answering
key scientific and technical questions
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Timeline

=l ong timeline for creation of in situ investigations
for NASA planetary missions
— Establish in situ / astrobiology science community
* Geology community has come a long way
» Biology community lagging

— Creation of accepted definitions and methods of in situ investigations
needed

 Lack of models of performance, calibration, ands system engineering
practices

For Flagship Missions in the 2015 — 2020 Time Frame,
Science Team and Instrument Development is NOW
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= Mars Organic Detector (MOD) aka UREY

— System to detect and analyze organic compounds in the Martian
Environment with high sensitivity and specificity

= Collaboration with JPL (Frank Grunthaner), UCSD (Jeff Bada), and
Richard Mathies (UCB)

— Working together over nine years

— Collaboration has used funding from ASTID, ASTEP (2), PIDDP,
MSMT, RTD, AEMC, Grand Challenge

= Allleading to proposal for UREY payload on EXOMARS

— Selected by ESA, now looking for selection as a Mission of
Opportunity

All this for ONE instrument Page 18
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In Situ Sample Analysis
Laboratories

are more complex

Electronics

Communicationl— \

7 Components

7

Sample Sample Thermal
Acquisition Processing Control
Operations Structure Environn}ea/

Sensor or Spectrometer

Instrument

Miniature and Capable
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Sample Communication
! Processing Electronics
Sample Sample
Acquisition Procesging Thermal
) Structure
Operations Sampl_e
Processing Environmenta
1
Sensor Sensor Sensor Sensor [—| Sensor |

Spectrometer Spectrometer Spectrometer

Data synthesis and intelligent systems

Laboratory
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California Institute of Tech Integra‘uon Of Many Emerglng
Advanced Concepts

@/ In Situ Sample Analysis Requires JPL

* Micro fabrication of traditional analytical tools

* Advanced sensor concepts, including biologically inspired
* Advanced transducer concepts

* Advanced micro scale sample handling &

preparation technologies Micro

Electronics

* Micro fabrication of supporting technologies
such as pumps

* Replenish/recycle expendables using in situ resources
* Integration

Micro column separator 500-nm micro wells on tip of fiber R
(Purdue) probe with chemical sensor beads Micro fluidic system

June 29, 2006 (Tufts) (Caliper, Inc9. e 20



@/m Supporting technologies for In Situ SJPL
Laboratories

=Microfluidic technologies
*Miniature vacuum pumps
*Visible, IR and UV Sensors

»Advanced miniature fabrication technologies
— Micro-machining

»Advanced Photonics development — lasers
»Advanced diffractive optics

= Sample acquisition and handling
— Acoustic coring
— Drilling (rock and ice)
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TDL-based
micro Raman Other emerging
analytical tools
Force-detection

NMR
\ Electronics
Hub
LAB-BENCH
Miniature PROCEDURES
—]
Mass Reagent preparation
spectroscopy Solution metering

/ Mixing
Solid-state ion- Filtering

specific electrodes Concentrating

Heating, cooling

Washing

Fluidics for sample Storage
preparation
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Distance of operation:

— “Local Remote”: meters to cm range working range
— “Contact”: cm to micron working range

— “Analytical’: Sample acquired, processed, and analyzed inside of
laboratory

— = The first two categories require little to no sample or surface
preparation - a major advantage for rapid assay operations, mass-
limited platforms, or for triage in selection of samples for further study or
collection

—Contact Instrument Examples include
*Microscopy
*Raman (Visible, UV, IR; wide area or microbeam)
Electron Probe, Alpha probe
LIBS
*Reflectance optical spectroscopy (UV, visible, IR, polarization)
*Magnetic resonance

June 29, 2006 ESTC - 2006 Page 23
Neutron Spectroscopy



National Aeronautics and Space Administration
Jet Propulsion Laboratory

California Institute of Tech In Situ Instrument CIaSSeS

= Measurement Types

— Detection/Classification/Identification of Chemical/Elemental species
Mass spectroscopies
Chromatography systems
X-ray diffraction / Florescence
Optical Spectroscopies (Absorption, Raman, Luminescence, etc)
Nuclear Magnetic Resonance

Almost every other currently available chemical assay is under some stage of
development

— Biological Detection / Identification
« ATP and QD tagging
» DPA detection

— Spatial Detection Methods
 Optical Microscopy
« CT X-ray imaging
 Soft X-ray Photoemissions
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@/m Key for Analytical Instrument: S0
Sample Preparation

= Analytical in situ instruments rely on acquiring and preparing a
sample

» Necessity to develop sample preparation and extraction
techniques that
— Offer high efficiency
— Do NOT bias the measurements to be taken with downstream instruments
— Offer robust operation - often the limiting factor in lifetime
— Avoid cross contamination
— Provide Multiple samples/extracts to instrument suite
— Operate in reduced gravity conditions

» Techniques
— Pyrolysis
— Sublimation
— Polishing
— Supercritical CO2 extraction
— Subcritical H20 extraction
Jue 2\VlicFOWave extraction ESTC - 2006 Page 25
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*"[n Situ instruments are a unigue for NASA missions -
lessons from remote sensing often don’t apply

*Development of In Situ System Engineering
methods is a work in progress

*Defining, integrating and testing of space in situ
laboratories is currently more art than engineering

*The power of in situ methods, demonstrated in the
lab, is advancing rapidly, offering measurements
and science investigations not thought possible
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